设函数$f(x,y)$ 连续,则$\int_{-2}^{2}dx\int_{4-x^{2}}^{4}f(x,y)dy=$

题目
设函数f(x,y)f(x,y) 连续,则22dx4x24f(x,y)dy=\int_{-2}^{2}dx\int_{4-x^{2}}^{4}f(x,y)dy=
选项
A.
04[24yf(x,y)dx+4y2f(x,y)dx]dy\int_{0}^{4}[\int_{-2}^{-\sqrt{4-y}}f(x,y)dx+\int_{\sqrt{4-y}}^{2}f\left(x,y\right)dx]dy
B.
04[24yf(x,y)dx+4y2f(x,y)dx]dy\int_{0}^{4}[\int_{-2}^{\sqrt{4-y}}f\left(x,y\right)dx+\int_{\sqrt{4-y}}^{2}f\left(x,y\right)dx]dy
C.

04[24yf(x,y)dx+24yf(x,y)dx]dy\int_{0}^{4}[\int_{-2}^{-\sqrt{4-y}}f(x,y)dx+\int_{2}^{\sqrt{4-y}}f(x,y)dx]dy

D.
204dy[4y2f(x,y)dx2\int_{0}^{4}dy[\int_{\sqrt{4-y}}^{2}f(x,y)dx
正确答案A
相关试卷
  • 2025年全国硕士研究生招生考试数学一