设函数f(x)f(x) 在区间(a,b)(a,b) 内可导,证明:导函数f′(x)f^{\prime}(x) 在(a,b)(a,b) 内严格单调增加的充分必要条件是:对(a,b)(a,b) 内任意的x1,x2,x3x_1,x_2,x_3 ,当x1<x2<x3x_{1}\lt x_{2}\lt x_{3} 时,f(x2)−f(x1)x2−x1<f(x3)−f(x2)x3−x2\frac{f(x_2)-f(x_1)}{x_2-x_1}\lt \frac{f(x_3)-f(x_2)}{x_3-x_2}
2