设mm为正整数,数列a1,a2,...,a4m+2a_1,a_2,...,a_{4m+2}是公差不为0的等差数列,若从中删去两项aia_i和aj(i<j)a_j(i \lt j)后剩余的4m4m项可被平均分为mm组,且每组的4个数都能构成等差数列,则称数列a1,a2,...,a4m+2a_1,a_2,...,a_{4m+2}是(i,j)(i,j)-可分数列.
写出所有的(i,j)(i,j),1≤i<j≤61\leq i \lt j\leq6,使数列a1,a2,...,a6a_1,a_2,...,a_6是(i,j)(i,j)-可分数列;
当m≥3m\geq3时,证明:数列a1,a2,...,a4m+2a_1,a_2,...,a_{4m+2}是(2,13)(2,13)-可分数列;
从1,2,...,4m+21,2,...,4m+2中一次任取两个数ii和j(i<j)j(i\lt j),记数列a1,a2,...,a4m+2a_1,a_2,...,a_{4m+2}是(i,j)(i,j)-可分数列的概率为PmP_m,证明:Pm>18P_m \gt \frac{1}{8}.
3