2025年全国硕士研究生招生考试数学二答案

一、选择题(本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)

1. A
2. B
3. C
4. C
5. A
6. B
7. D
8. D
9. B
10. D

二、填空题(本题共6小题,每小题5分,共30分,把答案填在题中横线上)

11.

2

12.

y=x1y=x-1

13.

14-\frac{1}{4}

14.

ee

15.

5y24xy+3x2=45y^2-4xy+3x^2=4

16.

x=k(1111)+(1004)x = k\left(\begin{array}{c}1\\1\\-1\\-1\end{array}\right) + \left(\begin{array}{c}1\\0\\0\\4\end{array}\right)

三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)

17.

310ln2+π10\frac{3}{10}\ln2+\frac{\pi}{10}

18.

f(0)=5f^{\prime}(0)=5

19.

f(x,y)=x2ey+(y+2)ey;f(0,1)为极大值f(x,y)=-x^2e^{-y}+(y+2)e^{-y};\quad f(0,-1)\text{为极大值}

20.

12π112312\pi-\frac{112}{3}

21.

证明:(1)必要性
f(x2)f(x1)x2x1=f(ξ1)(x1\frac{f(x_2)-f(x_1)}{x_2-x_1}=f'(\xi_1)(x_1<ξ1\xi_1<x2)x_2)


f(x3)f(x2)x3x2=f(ξ2)(x2\frac{f(x_3)-f(x_2)}{x_3-x_2}=f'(\xi_2)(x_2<ξ2\xi_2<x3)x_3)

由于 f(x)f'(x)(a,b)(a, b) 上单增,且 ξ1\xi_1 < ξ2\xi_2,则 f(ξ1)f'(\xi_1) < f(ξ2)f'(\xi_2),进而
f(x2)f(x1)x2x1\frac{f(x_2) - f(x_1)}{x_2 - x_1} < f(x3)f(x2)x3x2\frac{f(x_3) - f(x_2)}{x_3 - x_2}
(2) 充分性
对于任意 c1c_1 < c2(a,b)c_2 \in (a, b) 有:
f(c1)=limxc1f(x)f(c1)xc1f'(c_1) = \lim_{x \to c_1} \frac{f(x) - f(c_1)}{x - c_1}
f(c2)=limxc2f(x)f(c2)xc2f'(c_2) = \lim_{x \to c_2} \frac{f(x) - f(c_2)}{x - c_2}
aa < c1c_1 < xx < c2c_2 < bb 时,由 f(x2)f(x1)x2x1\frac{f(x_2) - f(x_1)}{x_2 - x_1} < f(x3)f(x2)x3x2\frac{f(x_3) - f(x_2)}{x_3 - x_2} 知,
f(c1)f(a)c1a\frac{f(c_1) - f(a)}{c_1 - a} < f(x)f(c1)xc1\frac{f(x) - f(c_1)}{x - c_1} < f(c2)f(x)c2x\frac{f(c_2) - f(x)}{c_2 - x}
两边同时取极限及极限的保号性可知:
limxc1+f(x)f(c1)xc1limxc1+f(c2)f(x)c2x=f(c2)f(c1)c2c1\lim_{x \to c_1^+} \frac{f(x) - f(c_1)}{x - c_1} \leq \lim_{x \to c_1^+} \frac{f(c_2) - f(x)}{c_2 - x} = \frac{f(c_2) - f(c_1)}{c_2 - c_1}

limxc1+f(c2)f(x)c2xlimxc1f(x)f(c1)xc1=f(c2)f(c1)c2c1\lim_{x \to c_1^+} \frac{f(c_2) - f(x)}{c_2 - x} \geq \lim_{x \to c_1^-} \frac{f(x) - f(c_1)}{x - c_1} = \frac{f(c_2) - f(c_1)}{c_2 - c_1}
进而 \text{进而 }f(c1)=f'(c_1) = limxc1+f(x)f(c1)xc1\lim_{x \to c_1^+} \frac{f(x) - f(c_1)}{x - c_1} \leq limxc1f(x)f(c2)xc2=f(c2)\lim_{x \to c_1^-} \frac{f(x) - f(c_2)}{x - c_2} = f'(c_2) , 即 f(x) 在 (a,b) 上单增.\text{, 即 } f'(x) \text{ 在 } (a, b) \text{ 上单增.}

(1).

a=4,ka=4,k>0;0;

(2).

k=3,Q=[13121613026131216]k=3,\quad Q=\begin{bmatrix}\frac{1}{\sqrt{3}}&-\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{6}}\\\frac{1}{\sqrt{3}}&0&-\frac{2}{\sqrt{6}}\\\frac{1}{\sqrt{3}}&\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{6}}\end{bmatrix}