2025年全国硕士研究生招生考试数学二答案
一、选择题(本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)
二、填空题(本题共6小题,每小题5分,共30分,把答案填在题中横线上)
2
y=x−1y=x-1
−14-\frac{1}{4}
ee
5y2−4xy+3x2=45y^2-4xy+3x^2=4
x=k(11−1−1)+(1004)x = k\left(\begin{array}{c}1\\1\\-1\\-1\end{array}\right) + \left(\begin{array}{c}1\\0\\0\\4\end{array}\right)
三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)
310ln2+π10\frac{3}{10}\ln2+\frac{\pi}{10}
f′(0)=5f^{\prime}(0)=5
f(x,y)=−x2e−y+(y+2)e−y;f(0,−1)为极大值f(x,y)=-x^2e^{-y}+(y+2)e^{-y};\quad f(0,-1)\text{为极大值}
12π−112312\pi-\frac{112}{3}
证明:(1)必要性f(x2)−f(x1)x2−x1=f′(ξ1)(x1\frac{f(x_2)-f(x_1)}{x_2-x_1}=f'(\xi_1)(x_1<ξ1\xi_1<x2)x_2)
f(x3)−f(x2)x3−x2=f′(ξ2)(x2\frac{f(x_3)-f(x_2)}{x_3-x_2}=f'(\xi_2)(x_2<ξ2\xi_2<x3)x_3)
由于 f′(x)f'(x) 在 (a,b)(a, b) 上单增,且 ξ1\xi_1 < ξ2\xi_2,则 f′(ξ1)f'(\xi_1) < f′(ξ2)f'(\xi_2),进而f(x2)−f(x1)x2−x1\frac{f(x_2) - f(x_1)}{x_2 - x_1} < f(x3)−f(x2)x3−x2\frac{f(x_3) - f(x_2)}{x_3 - x_2}(2) 充分性对于任意 c1c_1 < c2∈(a,b)c_2 \in (a, b) 有:f′(c1)=limx→c1f(x)−f(c1)x−c1f'(c_1) = \lim_{x \to c_1} \frac{f(x) - f(c_1)}{x - c_1}f′(c2)=limx→c2f(x)−f(c2)x−c2f'(c_2) = \lim_{x \to c_2} \frac{f(x) - f(c_2)}{x - c_2}当 aa < c1c_1 < xx < c2c_2 < bb 时,由 f(x2)−f(x1)x2−x1\frac{f(x_2) - f(x_1)}{x_2 - x_1} < f(x3)−f(x2)x3−x2\frac{f(x_3) - f(x_2)}{x_3 - x_2} 知,f(c1)−f(a)c1−a\frac{f(c_1) - f(a)}{c_1 - a} < f(x)−f(c1)x−c1\frac{f(x) - f(c_1)}{x - c_1} < f(c2)−f(x)c2−x\frac{f(c_2) - f(x)}{c_2 - x}两边同时取极限及极限的保号性可知:limx→c1+f(x)−f(c1)x−c1≤limx→c1+f(c2)−f(x)c2−x=f(c2)−f(c1)c2−c1\lim_{x \to c_1^+} \frac{f(x) - f(c_1)}{x - c_1} \leq \lim_{x \to c_1^+} \frac{f(c_2) - f(x)}{c_2 - x} = \frac{f(c_2) - f(c_1)}{c_2 - c_1}
limx→c1+f(c2)−f(x)c2−x≥limx→c1−f(x)−f(c1)x−c1=f(c2)−f(c1)c2−c1\lim_{x \to c_1^+} \frac{f(c_2) - f(x)}{c_2 - x} \geq \lim_{x \to c_1^-} \frac{f(x) - f(c_1)}{x - c_1} = \frac{f(c_2) - f(c_1)}{c_2 - c_1}进而 \text{进而 }f′(c1)=f'(c_1) = limx→c1+f(x)−f(c1)x−c1\lim_{x \to c_1^+} \frac{f(x) - f(c_1)}{x - c_1} ≤\leq limx→c1−f(x)−f(c2)x−c2=f′(c2)\lim_{x \to c_1^-} \frac{f(x) - f(c_2)}{x - c_2} = f'(c_2) , 即 f′(x) 在 (a,b) 上单增.\text{, 即 } f'(x) \text{ 在 } (a, b) \text{ 上单增.}
a=4,ka=4,k>0;0;
k=3,Q=[13−1216130−26131216]k=3,\quad Q=\begin{bmatrix}\frac{1}{\sqrt{3}}&-\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{6}}\\\frac{1}{\sqrt{3}}&0&-\frac{2}{\sqrt{6}}\\\frac{1}{\sqrt{3}}&\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{6}}\end{bmatrix}